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LETTER TO THE EDITOR 

The statistics of eigenvector components of random band 
matrices: analytical results 

Alexander D Mirlin and Yan V Fyodorovt 
St Pemsburg Nuclear Physics Institute, 188350 Galchina. St Pewburg  District. Russia 

Received 16 December 1992 

A b s t r a w i n g  a supersymmetric formalism we calculate analytically all higher moments 
Pq = En IqnI.l?4 generalizing the inverse participation ratio P, where %(I < n 4 N) stands 
for the nth component of an eigenvector of a large random matrix with a band structure. On 
this basis we reconstruct the whole probability distribution function of eigenvector components. 
The relation with known numerical results is discussed. 

Large N x N random matrices whose elements differ appreciably from zero within a band of 
a typical size h around the main diagonal has recently attracted a lot of research interest [I- 
121. The property that makes this class of random matrices interesting is the localization of 
their eigenvectors [2],  which is in conlrast to the situation in the usually studied Gaussian 
orthogonal, unitary and symplectic ensembles (GOE, GUE, GSE). Such a qualitatively dif- 
ferent structure of eigenvectors affects the eigenvalues statistics which changes between a 
Poissonic and a Wigner-Dyson one depending on the only scaling parameter x = bZ/N [31. 
This interpolation property was an original motivation for the introduction of the ensemble 
of random-band matrices (RBM) [I]  as an attempt to describe the intermediate level statistics 
typical for Hamiltonian systems in a transition regime between the complete integrability 
(corresponding to Poissonic statistics [13]) and fully developed chaos characterized by the 
Wigner-Dyson statistics [ 141. 

Considerable interest in the ensemble of RBM was stimulated by investigation of quantum 
behaviour of periodically driven Hamiltonian systems. A paradigmatic system in this class 
is a so-called kicked rotator (KR) (see review [15]). Classically it exhibits an unbounded 
diffusion in the angular momentum space when a strength of kicks exceeds some critical 
value. It was observed, however, that in a quasiclassical regime quantum effects suppress a 
classical diffusion [ 161 in close analogy with the Anderson localization of a quantum particle 
by a random potential. A formal connection with a kind of ID tight-binding model has been 
found I171 that revived a general interest to a localization in one-dimensional systems. 
This effect of the ‘dynamical localization’ was claimed to be experimentally observed in 
ionization experiments in a monochromatic field (see review [le]). 

In an appropriate basis the matrix of the evolution operator ir for the KR that relates 
values of the wavefunction in one period of perturbation appears to have a band structure 
with pseudorandom elements within the band [15]. The width of the band proves to be 
large in the quasiclassic regime. All these observations gave a boost to the investigations 

1 Present address: Dept of Nuclear Physics, Weimann Institute of Science, Rehovot 76100, Israel. 
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of statistical properties of eigenvectors and eigenvalues of RBM in order to use the extracted 
information for understanding of related properties of KR. 
' Intensive numerical simulations [2-7,9,10,12] revealed some universality in the 

statistical properties of REM. In particular, it was shown that the whole distribution function 
of eigenvector components is dependent on the same scaling parameter n' as the probability 
distribution function of eigenvalue spacings [9]. The origin of such a scaling behaviour was 
explained in our previous paper 181 where it was demonstrated that the localization length e 
of an eigenvector is proportional to b2 when the matrix size N tends to infinity. Exploiting 
the analogy with the theory of disordered conductors we therefore conclude that all statistical 
properties of the system should be'dependent only on the ratio C / N  EX* which is nothing 
but the requirement of the weH known scaling hypothesis 1191. 

It is worth mentioning that RBM-like ensembles also arise in solid state physics in 
the course of investigation of conductance fluctuations of quasi-one-dimensional disordered 
systems [ZO]. Namely, an isolated thick wire with length L and a cross-section S (k;S >> 
1,k~l - 1 where kF is the Fermi wavenumber and 1 is the electron mean free path) 
corresponds to the RBM with a bandwidth b a k$ and a matrix size N a k:LS. Let 
us also mention that RBM were claimed to be relevant for the explanation of the behaviour 
of mesoscopic cylinders threaded by a linearly time-dependent magnetic flux [Zl]. 

In order to describe statistics of eigenvectors of RBM in a quantitative way a Set 
of generalized localization lengths cq was introduced 1541 according to the following 
definition: 

where Yhk' is the nth component of the kth eigenvector of the matrix and the bar means 
both the averaging over the disorder and over a set of eigenvectors corresponding to a 
narrow window of eigenvalues E k  at a given point of spectrum. Quantities Pq are a natural 
generalization of the inverse participation ratio Pz which has a simple physical meaning of 
probability for a quantum particle with RBM-type Hamiltonian to re" to the initial position 
after infinite time. 

In [2] it was noticed that in a wide range of values of x*(x* 5 IO) the following scaling 
relation for the entropic localization length 6, holds numerically: 

-- P I  -c lx* 
1 -PI Pi h I N  

In the related publication [4], it was claimed that the relation analogous to (2) is also true 
for all Pq = &/.$foE where 6:'" is the generalized localization lengfb for WE. 

In our preceding publication [I I ]  we calculated analytically the inverse participation 
ratio P2 and demonstrated that the scaling law (2) holds exactly in this case. In the present 
paper we generalize our method in order to calculate higher moments Pq, q = 3,4 . .  . . 
It allows us to derive a closed analytical expression for the whole distribution function of 

We consider the ensemble of random bandlike N x N (N >> 1) matrices I?- 
real symmetric or Hermitian-whose elements H; = Ifcj  are distributed independently 
according to the Gaussian law with mean zero value and variances (If;&) = &(li - 

1 q q 2 .  
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j l ) ( l  +&j) . The function a(r) decays exponentially for r exceeding the bandwidth b >> 1. 
For the sake of simplicity we consider the case of Hermitian RBM in detail presenting the 
final results for real RBM at the end of the letter. Let us note that physically the ensemble 
of Hermitean (real) matrices corresponds to a quantum system with broken (unbroken) 
time-reversal invariance. 

Our aim is to calculate all moments of the eigenvector (1) that can be written in the 
form 

where p ( E )  is the density of states, averaging is performed over the matrix ensemble and 
P(y)  is a distribution function of the variable y, = Nl*.lZ. For this purpose we introduce 
the following set of correlation function: 

~r.,,,(n, q) = (n l (E + iq - 8)-11n)'(n~(~ - iq - A ) - W  

In the limit q -+ 0 they have a singularity of the form ql-'-"' which can be easily extracted 
that gives 

l , m > l  q > O .  (4) 

(1 - I)!(m - I)! i1-m 
Pq(E,  n) = -~ lim(2q)'+m-1K,.m(n, q) ~ q = I + m . 

2 n p ( E )  (Z+m-2)! 11'0 

(5) 
To calculate the correlators (4) we use the supersymmetric formalism [22]. Here we give 
only the sketch of the procedure [8,11,22]. The necessary steps are: 

(i) to express the correlation function (4) in terms of the integral over superfields: 

where a supervector @: has the structure 0: = (@ti, x t i ;  @&&) with two commuting 
variables @ and two Grassmannian variables x; L = diag(l.1, -1, -I}; 

(ii) to average (6) over ~ the di~order and to decouple the resulting quartic term in 
the exponent introducing a supermatrix composite variable Q (the HubbaKCStratonovich 
transformation); 

(iii) to perform Gaussian integration over supervectors @ j  and to make use of a saddle- 
point approximation for the remaining integral over Q that is justified in the limit b2, N >> 1. 
As a result we obtain 



L554 Letter to the Editor 

Here Q =( i:: i?) is 4 x 4 s&mnatrix belonging to the graded co-set space U(1, $) 

(explicit parametrization of Q can be found in [U]); all Qpp. are 2 x 2 supermatrices and 
subscript ‘bb’ denotes their boson-boson components. The action S[Q] in (7) is given by 

, .  

S[QI= CStr{-yQiQt+l +ieQiL} (8) 
i 

where 

y = ( 1 r p ) ~ B ~ / 4  E = n p q  12 

and Str stands for the supertrace [22]. 

expressed in the form 
In view of a one-dimensional structure of (8) the correlation function (7) can be 

K d n ,  q )  = /dfi(Q)F(Q)Y(Q,N -n)Y(Q,n)exp{-itS~QL.l (10) 

where Y(Q, n )  satisfies the reccurence equation 

(11) 
L ( Q ,  Q’) =exp{ySrQQ’-icStrQL}. 

Making use of the Efetov parametrization of matrix Q [22,23] it is possible to show 
that Y(Q,n) depends only on ‘eigenvalues’ AI. AZ of the Q I ~  block. The integration 
over remaining degrees of freedom can be carried out using the general method developed 
in t22.231. 

In the limit E + 0 that we are interested in, the main contribution to the integral (10) 
comes from the region - E - ’  and the function Y(Q,n) proves to be dependent only on 
the variable z = AI€. Moreover, in this asymptotic domain 

Q t l . b b ~ z z . b b  e Qiz,bbQzi,bb. (12) 

Performing the computation, we get 

We put the superscript H in order ta remind the reader that the derivation was performed 
for Hermitian matrices. 

The recurrence relation ( I  1) in the limit N ,  bZ >> 1 may be reduced to the following 
differential equation [ 1 I]?: 

r ,  = (-y + &$)Y (y . 5 )  Y(y, 0) = 1 ar 

t Let us note that lhe same equation (14) appeared in the course of investigation of a sm’ctly one-dimensional 
system by the Berezinskii technique [24.251. ., 
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where y = rtyirpz and we introduced the continuous variable 5 = n / 4 y  instead of the 
discrete index n. Then, averaging (13) over n we get: 

where the parameter x = N/4y o( N/b2 is the only scaling variable characterizing the RBM 
ensemble. 

The solution Y(y, r )  of (15) can be found [11,25] in the form of the Lebedev- 
Kantorovich expansion: 

By using expressions (15) for P," we can restore the distribution function ?:Cy) introduced 
in (3) in terms of the function Y (y. 5): 

Let us first consider two limiting cases x >> 1 and x << 1. When considering small values 
of x ,  that corresponds to the matrix size N much smaller than the localization length 5 c( b2, 
it is more convenient to solve (4) iteratively rather than to use the exact expression (16). 
That gives for s << 1, s y  5 1 

Y(y. r )  c e-.Y( 1 + rf(ry)2 + s2[;(ry)* - $ ( ~ y ) ~  + & ( r ~ ) ~ ]  + o ( ~ ~ ) ) .  

Substituting (18) into (17) we get the asymptotic expansion for x << 1: 

P;(Y) = e-y{ 1 + X I :  - $ y  + $y2] +xz[& - gy + g y 2  - gy3 + $y4] + 0(x3) } .  

(18) 

(19) 

The leading term in this expression corresponds to the pure GE m e  (x = 0); higher terms 
are due to localization effects. 

By using (19) we easily get the corresponding expansion for reduced moments @(x) = 
P," ( x )  / P?: 

Bp) = i + - i ) ~  + - i)(q - 2)(3' - W+ o ( d .  (20) 

In the opposite case x >> 1 corresponding to the strongly localized eigenstates the leading- 
order expression for PF(y) can be obtained if we take into account only the first term in 
(16): 

P , " ( Y ) ~ ~ [ K : ( ~ ~ + K ~ ( ~ ~ ]  x-+w ~ > > x e - ~ .  (21) 
8 
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The expressions for reduced moments j ,  can be obtained at x >> 1 with an exponential 
accuracy: 

(22) 
11 

Aq = - 
5 ".. 

4 
A % = ]  A , = -  

3 

Having at our disposal the distribution function in two limiting cases, equations (19) and 
(21). we are able to calculate the asymptotic expressions for the entropic localization lengul 
61 as well: 

where 
For q = 2 it tums out to be possible to calculate &x) exactly [Ill: @ ( x )  = 1 +x/3 .  

For higher q the value of the reduced moments j4 can be obtained by substituting (16) into 
(15). performing the integration over y and U analytically and calculating the remaining 
double integral numerically. It is interesting to note that the two asymptotics, (20) and 
(22). match very well in the intermediate region and, when combined, perfectly describe 
the function a 4 ( x )  at the whole range of x. 

So far we discussed the case of RBM with Hermitian structure. The supersymmetric 
approach allows us to perform all calculation for real symmetric (FS) band matrices as well. 
The resulting expressions are quite similar to those presented above. Namely, the inverse 
participation ratio PZs is proportional to p,": 

= N exp{C - 1) and C = OS77 is the Euler constant. 

A.-.-.,-. 

, , ,  

- E  
-8 -6 - 4  -2 0 2 

I"/ 

Figure 1. The Iog-lcg plot of & versus +-I for q = 3,4. 
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Figure 2. The deviation from the linear law. (28): the plot of S&) = In[x&/(l- pq)]  - d; 
versus hx-1 for 9 = 3; 4. 

where now BRS(x) = P ~ ( x ) / P ~ :  P,"" = Pp"s(0). For the dishibution function of the 
components if eigenvector we get from (24) 

For x << 1 it gives the expression 

(26) 

and the limiting expression at x + 00, y >> x e-x is 

8 
PRS(y)lx-tm = - - & E K I ( ~ ~ .  (27) 

In order to compare our results with the empirical scaling law [4] 

8qm- 8s) = cqx* (28) 

where & = &"(q-l) and x* = b2/N (b2/y)x-', we plotted In [&/(1 - &)I versus 
Inx-' (figure 1) for 4 = 3.4. If the relation (28) were true, the curves would be straight 
lines. We see that in a wide range of x it is approximately true with very high accuracy. 
However, we would like to stress that (28) is not an exact relation for q # 2 that can 
be easily seen from the asymptotic expressions (20) and (22). In particular, the quantity 
dq = ln[x&/(l- &)I has different limiting values d,' at hx + $00: 

1 (2q - l)! 
q!(q - 1)!2 

+ - -  In d; = -Inq/6. dq - q - 1 
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It is easy to see that indeed d: = d; only at 9 = 7. when the relation (28) is exact [111. 
For 9 # 2 the difference Aq = d$ - d; has a non-zero value but is rather small: 
AI = -0.215, A3 = 0.111, A4 = 0.183, ..., Am = 0.594. This explains the good 
accuracy of the conjecture (28). Deviations from the linear law (28) are displayed in 
figure 2 for q = 3.4. 

Let us also note that a detailed comparison with numerical results of other papers [2,71 
is difficult since the authors of the cited papers averaged their data over the whole spectrum 
whereas our results are derived at a given point of the spectrum. Further numerical work 
is desirable from this point of view. 

The authors are grateful to G Casati, B Chirikov, I Guamery, F Izrailev and L Molinari for 
stimulating discussions and to D Aristov for his help in numerical calculations. W F  and 
ADM acknowledge with thanks the warm hospitality extended to them during their visits 
to the Como University and Wissenschaftskolleg zu Berlin, respectively. 
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